Lowest Price Guaranteed From USD 4,799
Published
March 2023
Pages
327
View Count
9532
Example Insights
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Report Description
The global deep learning in drug discovery market and deep learning in diagnostics market is estimated to be worth $590 million in 2023 and is expected to grow at compounded annual growth rate (CAGR) of 22.7% during the forecast period. Since the mid-twentieth century, computing devices have continually been explored for applications beyond mere calculations, to emerge as machines that possess intelligence. These targeted efforts have contributed to the introduction of artificial intelligence, the next-generation simulator that employs programmed machines possessing the ability to comprehend data and execute the instructed tasks. The progress of artificial intelligence can be attributed to machine learning, a field of study imparting computers with the ability to think without being explicitly programmed. Deep learning is a complex machine learning algorithm that uses a neural network of interconnected nodes / neurons in a multi-layered structure, thereby enabling the interpretation of large volumes of unstructured data to generate valuable insights. The mechanism of deep learning technique resembles the interpretation ability of human beings, making it a promising approach for big data analysis. Owing to the distinct characteristic of deep learning algorithm to imitate human brain, it is currently being deployed in the life sciences domain, primarily for the purpose of drug discovery and diagnostics. Considering the challenges associated with drug discovery and development, such as the high attrition rate and increased financial burden, deep learning has been found to improve the overall R&D productivity and enhance diagnosis / prediction accuracy. Recent advancements in the deep learning domain have demonstrated its potential in other healthcare-associated segments, such as medical image analysis, molecular profiling, virtual screening and sequencing data analysis. Driven by the ongoing pace of innovation and the profound impact of implementation of such solutions, deep learning is anticipated to witness substantial growth in the foreseen future.
The Deep Learning in Drug Discovery Market and Deep Learning in Diagnostics Market (2nd Edition), 2023-2035: Distribution by Therapeutic Area (Oncological Disorders, Infectious Diseases, Neurological Disorders, Immunological Disorders, Endocrine Disorders, Cardiovascular Disorders, Respiratory Disorders, Ophthalmic Disorders, Musculoskeletal Disorders, Inflammatory Disorders and Other Disorders) and Key Geographical Regions (North America, Europe, Asia Pacific and Rest of the World): Industry Trends and Global Forecasts, 2023-2035 report features an extensive study of the current market landscape and the likely future potential of the deep learning solutions market within the healthcare domain. The report highlights the efforts of several stakeholders engaged in this rapidly emerging segment of the pharmaceutical industry. The report answers many key questions related to this domain.
Currently, more than 200 industry players are focused on providing deep learning-based services / technologies for drug discovery and diagnostic purposes. The primary focus areas of these companies include big data analysis, medical imaging, medical diagnosis and genetic / molecular data analysis. Further, these players are engaged in offering services across a wide range of therapeutic areas. It is worth highlighting that deep learning-powered diagnostic service providers offer various diagnostic solutions, such as structured analysis reports, image interpretation and biomarker identification solutions, with input data from several compatible devices.
Lately, the industry has witnessed the development of advanced deep learning technologies / software. These technologies possess the ability to obviate the concerns associated with the conventional drug discovery process. Eventually, such technologies will aid in the reduction of financial burden associated with drug discovery. The global deep learning market focusing on drug discovery is anticipated to grow at a CAGR of over 22.7% between 2023 and 2035. By 2035, the deep learning in drug discovery market for oncological disorders is expected to capture the majority share. In terms of geography, the market in North America and Europe is anticipated to grow at a relatively faster pace by 2035.
The adoption of deep learning-powered technologies to assist medical diagnosis, as well as prevention of diseases, has increased in the recent past. The global deep learning market focusing on diagnostics is anticipated to grow at a CAGR of over 15% between 2023 and 2035. By 2035, the deep learning in diagnostics market in North America is expected to capture the majority share. In terms of therapeutic areas, the deep learning in diagnostics market for endocrine and respiratory disorders is anticipated to grow at a relatively faster pace by 2035.
The study covers the revenues from deep learning technology for their potential applications in the drug discovery and diagnostics domain. As of 2022, deep learning-based diagnostics held the largest share of the market, owing to the efficiency and precision of applying deep learning-powered diagnostic solutions. Further, the deep learning in drug discovery market is anticipated to grow at a relatively higher growth rate during the given time period with several pharmaceutical companies actively collaborating with solution providers for drug design and development.
The use of deep learning in drug discovery has the potential to reduce capital requirements and the failure-to-success ratio, as algorithms are better equipped to analyze large datasets. Similarly, in diagnostics domain, deep learning technology can be used to assist medical professionals in medical imaging and interpretation. This enables quick and efficient diagnosis of disease indications at an early stage.
In the last decade, the healthcare industry has witnessed an inclination towards the adoption of information services and digital analytical solutions. This can be attributed to the fact that companies have recently shifted towards high-resolution medical images and electronic health and medical records, generating large and complex data, referred to as big data. In order to analyze such large, structured and unstructured datasets, efficient tools and technology, such as deep learning, are required. Thus, these massive datasets are anticipated to be a primary driver of technological advancements in the deep learning and artificial intelligence domain.
Many stakeholders have been making consolidated efforts to forge alliances with other industry / non-industry players for research, software licensing and collaborative drug / solution development purposes. It is worth highlighting that over 240 clinical studies are being conducted to evaluate the potential of deep learning in diagnostics, highlighting the continuous pace of innovation in this field. Moreover, the field is evolving continuously, as a number of start-ups have emerged with the aim of developing deep learning technologies / software. In this context, in the past seven years, over 60 companies providing deep learning-based solutions have been established. Given the inclination towards advanced deep learning technologies and their vast applications in the healthcare segment, we believe that the deep learning market is likely to evolve at a rapid pace over the coming years.
Examples of players engaged in the deep learning in drug discovery domain (which have also been captured in this report) include (in alphabetic order) Atomwise, Benevolent.ai, Cloud Pharmaceuticals, Deargen, Deep Cure, Exscientia, GNS Healthcare, Insilico Medicine, Isomorphic Labs, Juvena Therapeutics, Merative, Optibrium and Valence Discovery.
Examples of players engaged in the deep learning in diagnostic domain (which have also been captured in this report) include (in alphabetic order) Avalon AI, Behold.ai, Blueberry Diagnostics, Deep Longevity, Esaote, Enlitic, Flatiron Health, H2O.ai, Huawei, InMed Prognostics, Kheiron Medical, Mediwhale, Nference and Visiopharm.
Several recent developments have taken place in the field of deep learning in drug discovery. We have outlined some of these recent initiatives below. These developments, even if they took place post the release of our market report, substantiate the overall market trends that have been outlined in our analysis.
The study presents an in-depth analysis of the various firms / organizations that are engaged in this domain, across different segments as defined in the below table:
Report Attributes | Details | |
Forecast Period |
|
|
Therapeutic Areas |
|
|
Key Geographical Regions |
|
|
Key Companies Profiled |
|
|
Customization Scope |
|
|
PowerPoint Presentation (Complimentary) |
|
|
Excel Data Packs (Complimentary) |
|
The study presents an in-depth analysis, highlighting the capabilities of various stakeholders engaged in this domain, across different geographies. Amongst other elements, the report includes:
One of the key objectives of the report was to estimate the current opportunity and future growth potential of deep learning market for drug discovery and diagnostic purposes over the coming years. We have provided informed estimates on the likely evolution of the market in the mid-to-long term, for the period, 2023-2035. Our year-wise projections of the current and future opportunity have further been segmented based on relevant parameters, such as therapeutic area (oncological disorders, infectious diseases, neurological disorders, immunological disorders, endocrine disorders, cardiovascular disorders, respiratory disorders, ophthalmic disorders, musculoskeletal disorders and other disorders) and key geographical regions (North America, Europe, Asia Pacific and Rest of the World). Further, the chapter includes estimates of the likely cost saving potential of deploying deep learning technologies in the healthcare domain. In order to account for future uncertainties associated with some of the key parameters and to add robustness to our model, we have provided three market forecast scenarios, namely conservative, base and optimistic scenarios, representing different tracks of the industry’s evolution.
The opinions and insights presented in the report were influenced by discussions held with stakeholders in this domain. The report features detailed transcripts of interviews held with the following individuals:
All actual figures have been sourced and analyzed from publicly available information forums and primary research discussions. Financial figures mentioned in this report are in USD, unless otherwise specified.
Contents
1. PREFACE
1.1. Introduction
1.2. Key Market Insights
1.3. Scope of the Report
1.4. Research Methodology
1.5. Frequently Asked Questions
1.6. Chapter Outlines
2. EXECUTIVE SUMMARY
3. INTRODUCTION
3.1. Humans, Machines and Intelligence
3.2. The Science of Learning
3.2.1. Teaching Machines
3.2.1.1. Machines for Computing
3.2.1.2. Artificial Intelligence
3.3. The Big Data Revolution
3.3.1. Overview of Big Data
3.3.2. Role of Internet of Things (IoT)
3.3.3. Key Application Areas of Big Data
3.3.3.1. Big Data Analytics in Healthcare
3.3.3.2. Machine Learning
3.3.3.3. Deep Learning
3.4. Deep Learning in Healthcare
3.4.1. Personalized Medicine
3.4.2. Lifestyle Management
3.4.3. Drug Discovery
3.4.4. Clinical Trial Management
3.4.5. Diagnostics
3.5. Concluding Remarks
4. MARKET OVERVIEW: DEEP LEARNING IN DRUG DISCOVERY
4.1. Chapter Overview
4.2. Deep Learning in Drug Discovery: Overall Market Landscape of Service / Technology Providers
4.2.1. Analysis by Year of Establishment
4.2.2. Analysis by Company Size
4.2.3. Analysis by Location of Headquarters
4.2.4. Analysis by Application Area
4.2.5. Analysis by Focus Area
4.2.6. Analysis by Therapeutic Area
4.2.7. Analysis by Operational Model
4.2.7.1. Analysis by Service Centric Model
4.2.7.2. Analysis by Product Centric Model
5. MARKET OVERVIEW: DEEP LEARNING IN DIAGNOSTICS
5.1. Chapter Overview
5.2. Deep Learning in Diagnostics: Overall Market Landscape of Service / Technology Providers
5.2.1. Analysis by Year of Establishment
5.2.2. Analysis by Company Size
5.2.3. Analysis by Location of Headquarters
5.2.4. Analysis by Application Area
5.2.5. Analysis by Focus Area
5.2.6. Analysis by Therapeutic Area
5.2.7. Analysis by Type of Offering / Solution
5.2.8. Analysis by Compatible Device
6. COMPANY PROFILES
6.1. Chapter Overview
6.2. Aegicare
6.2.1. Company Overview
6.2.2. Service Portfolio
6.2.3. Recent Developments and Future Outlook
6.3. Aiforia Technologies
6.3.1. Company Overview
6.3.2. Financial Information
6.3.3. Service Portfolio
6.3.4. Recent Developments and Future Outlook
6.4. Ardigen
6.4.1. Company Overview
6.4.2. Financial Information
6.4.3. Service Portfolio
6.4.4. Recent Developments and Future Outlook
6.5. Berg
6.5.1. Company Overview
6.5.2. Service Portfolio
6.5.3. Recent Developments and Future Outlook
6.6. Google
6.6.1. Company Overview
6.6.2. Financial Information
6.6.3. Service Portfolio
6.6.4. Recent Developments and Future Outlook
6.7. Huawei
6.7.1. Company Overview
6.7.2. Financial Information
6.7.3. Service Portfolio
6.7.4. Recent Developments and Future Outlook
6.8. Merative
6.8.1. Company Overview
6.8.2. Service Portfolio
6.8.3. Recent Developments and Future Outlook
6.9. Nference
6.9.1. Company Overview
6.9.2. Service Portfolio
6.9.3. Recent Developments and Future Outlook
6.10. Nvidia
6.10.1. Company Overview
6.10.2. Financial Information
6.10.3. Service Portfolio
6.10.4. Recent Developments and Future Outlook
6.11. Owkin
6.11.1. Company Overview
6.11.2. Service Portfolio
6.11.3. Recent Developments and Future Outlook
6.12. Phenomic AI
6.12.1. Company Overview
6.12.2. Service Portfolio
6.12.3. Recent Developments and Future Outlook
6.13. Pixel AI
6.13.1. Company Overview
6.13.2. Service Portfolio
6.13.3. Recent Developments and Future Outlook
7. PORTER’S FIVE FORCES ANALYSIS
7.1. Chapter Overview
7.2. Methodology and Assumptions
7.3. Key Parameters
7.3.1. Threats of New Entrants
7.3.2. Bargaining Power of Companies Using Deep Learning for Drug Discovery and Diagnostics
7.3.3. Bargaining Power of Drug Developers
7.3.4. Threats of Substitute Technologies
7.3.5. Rivalry Among Existing Competitors
7.4. Concluding Remarks
8. CLINICAL TRIAL ANALYSIS
8.1. Chapter Overview
8.2. Scope and Methodology
8.3 Deep Learning Market: Clinical Trial Analysis
8.3.1. Analysis by Trial Registration Year
8.3.2. Analysis by Trial Status
8.3.3. Analysis by Trial Registration Year and Patient Enrollment
8.3.4. Analysis by Trial Registration Year and Trial Status
8.3.5. Analysis by Type of Sponsor / Collaborator
8.3.6. Analysis by Therapeutic Area
8.3.7. Word Cloud: Trial Focus Area
8.3.8. Analysis by Study Design
8.3.9. Geographical Analysis by Number of Clinical Trials
8.3.10. Geographical Analysis by Trial Registration Year and Patient Population
8.3.11. Leading Organizations: Analysis by Number of Registered Trials
9. FUNDING AND INVESTMENT ANALYSIS
9.1. Chapter Overview
9.2. Types of Funding
9.3. Deep Learning Market: Funding and Investment Analysis
9.3.1. Analysis by Year of Funding
9.3.2. Analysis by Amount Invested
9.3.3. Analysis by Type of Funding
9.3.4. Analysis by Year and Type of Funding
9.3.5. Analysis by Focus Areas
9.3.6. Analysis by Therapeutic Area
9.3.7. Analysis by Geography
9.3.8. Most Active Players: Analysis by Number of Funding Instances
9.3.9. Most Active Players: Analysis by Amount Invested
9.3.10. Most Active Investors: Analysis by Number of Funding Instances
10. START-UP HEALTH INDEXING
10.1. Chapter Overview
10.2. Start-ups Focused on Deep Learning in Drug Discovery
10.2.1. Methodology and Key Parameters
10.2.2. Analysis by Location of Headquarters
10.3. Benchmarking Analysis of Start-ups Focused on Deep Learning in Drug Discovery
10.3.1. Analysis by Focus Area
10.3.2. Analysis by Therapeutic Area
10.3.3. Analysis by Operational Model
10.3.4. Start-up Health Indexing: Roots Analysis Perspective
10.4. Start-ups Focused on Deep Learning in Diagnostics
10.4.1. Methodology and Key Parameters
10.4.2. Analysis by Location of Headquarters
10.5. Benchmarking Analysis of Start-ups Focused on Deep Learning in Diagnostics
10.5.1. Analysis by Focus Area
10.5.2. Analysis by Therapeutic Area
10.5.3. Analysis by Compatible Device
10.5.4. Analysis by Type of Offering
10.5.5. Start-up Health Indexing: Roots Analysis Perspective
11. COMPANY VALUATION ANALYSIS
11.1. Chapter Overview
11.2. Company Valuation Analysis: Key Parameters
11.3. Methodology
11.4. Company Valuation Analysis: Roots Analysis Proprietary Scores
12. MARKET SIZING AND OPPORTUNITY ANALYSIS: DEEP LEARNING IN DRUG DISCOVERY
12.1. Chapter Overview
12.2. Key Assumptions and Methodology
12.3. Overall Deep Learning in Drug Discovery Market, 2023-2035
12.3.1. Deep Learning in Drug Discovery Market: Analysis by Therapeutic Area, 2023-2035
12.3.1.1. Deep Learning in Drug Discovery Market for Oncological Disorders, 2023-2035
12.3.1.2. Deep Learning in Drug Discovery Market for Infectious Diseases, 2023-2035
12.3.1.3. Deep Learning in Drug Discovery Market for Neurological Disorders, 2023-2035
12.3.1.4. Deep Learning in Drug Discovery Market for Immunological Disorders, 2023-2035
12.3.1.5. Deep Learning in Drug Discovery Market for Endocrine Disorders, 2023-2035
12.3.1.6. Deep Learning in Drug Discovery Market for Cardiovascular Disorders, 2023-2035
12.3.1.7. Deep Learning in Drug Discovery Market for Respiratory Disorders, 2023-2035
12.3.1.8. Deep Learning in Drug Discovery Market for Other Disorders, 2023-2035
12.3.2. Deep Learning in Drug Discovery Market: Analysis by Geography, 2023-2035
12.3.2.1. Deep Learning in Drug Discovery Market in North America, 2023-2035
12.3.2.1.1. Deep Learning in Drug Discovery Market in the US, 2023-2035
12.3.2.1.2. Deep Learning in Drug Discovery Market in Canada, 2023-2035
12.3.2.2. Deep Learning in Drug Discovery Market in Europe, 2023-2035
12.3.2.2.1. Deep Learning in Drug Discovery Market in the UK, 2023-2035
12.3.2.2.2. Deep Learning in Drug Discovery Market in France, 2023-2035
12.3.2.2.3. Deep Learning in Drug Discovery Market in Germany, 2023-2035
12.3.2.2.4. Deep Learning in Drug Discovery Market in Spain, 2023-2035
12.3.2.2.5. Deep Learning in Drug Discovery Market in Italy, 2023-2035
12.3.2.2.6. Deep Learning in Drug Discovery Market in Rest of Europe, 2023-2035
12.3.2.3. Deep Learning in Drug Discovery Market in Asia Pacific, 2023-2035
12.3.2.3.1. Deep Learning in Drug Discovery Market in China, 2023-2035
12.3.2.3.2. Deep Learning in Drug Discovery Market in India, 2023-2035
12.3.2.3.3. Deep Learning in Drug Discovery Market in Japan, 2023-2035
12.3.2.3.4. Deep Learning in Drug Discovery Market in Australia, 2023-2035
12.3.2.3.5. Deep Learning in Drug Discovery Market in South Korea, 2023-2035
12.3.2.4. Deep Learning in Drug Discovery Market in Rest of the World, 2023-2035
12.3.3. Deep Learning in Drug Discovery: Cost Saving Analysis
12.3.3.1. Likely Cost Saving Potential Associated with the Use of Deep Learning in Drug Discovery, 2023-2035
13. MARKET SIZING AND OPPORTUNITY ANALYSIS: DEEP LEARNING IN DIAGNOSTICS
13.1. Chapter Overview
13.2. Key Assumptions and Methodology
13.3. Overall Deep Learning in Diagnostics Market, 2023-2035
13.3.1. Deep Learning in Diagnostics Market: Analysis by Therapeutic Area, 2023-2035
13.3.1.1. Deep Learning in Diagnostics Market for Oncological Disorders, 2023-2035
13.3.1.2. Deep Learning in Diagnostics Market for Cardiovascular Disorders, 2023-2035
13.3.1.3. Deep Learning in Diagnostics Market for Neurological Disorders, 2023-2035
13.3.1.4. Deep Learning in Diagnostics Market for Endocrine Disorders, 2023-2035
13.3.1.5. Deep Learning in Diagnostics Market for Respiratory Disorders, 2023-2035
13.3.1.6. Deep Learning in Diagnostics Market for Ophthalmic Disorders, 2023-2035
13.3.1.7. Deep Learning in Diagnostics Market for Infectious Diseases, 2023-2035
13.3.1.8. Deep Learning in Diagnostics Market for Musculoskeletal Disorders, 2023-2035
13.3.1.9. Deep Learning in Diagnostics Market for Inflammatory Disorders, 2023-2035
13.3.1.10. Deep Learning in Diagnostics Market for Other Disorders, 2023-2035
13.3.2. Deep Learning in Diagnostics Market: Analysis by Geography, 2023-2035
13.3.2.1. Deep Learning in Diagnostics Market in North America, 2023-2035
13.3.2.2. Deep Learning in Diagnostics Market in Europe, 2023-2035
13.3.2.3. Deep Learning in Diagnostics Market in Asia Pacific, 2023-2035
13.3.2.4. Deep Learning in Diagnostics Market in Rest of the World, 2023-2035
14. DEEP LEARNING IN HEALTHCARE: EXPERT INSIGHTS
14.1. Chapter Overview
14.2. Sean Lane, Chief Executive Officer (Olive)
14.3. Junaid Kalia, Founder (NeuroCare.AI) and Adeel Memon, Assistant Professor, Neurology Specialist (West Virginia University Hospitals)
14.4. David Reich, President / Chief Operating Officer (The Mount Sinai Hospital) and Robbie Freeman, Vice President of Clinical Innovation (The Mount Sinai Hospital)
14.5. Elad Benjamin, Vice President, Business Leader Clinical Data Services (Philips) and Jonathan Laserson, Senior Deep Learning Researcher (Apple)
14.6. Kevin Lyman, Founder and Chief Science Officer (Enlitic)
15. CONCLUDING REMARKS
16. INTERVIEW TRANSCRIPTS
16.1. Chapter Overview
16.2. Nucleai
16.2.1. Company Overview
16.2.2. Interview Transcript: Avi Veidman, Chief Executive Officer, Yoav Blum, Director of AI and Ken Bloom, Head of Pathology
16.3. Mediwhale
16.3.1. Company Overview
16.3.2. Interview Transcript: Kevin Choi, Chief Executive Officer
16.4. Arterys
16.4.1. Company Overview
16.4.2. Interview Transcript: Babak Rasolzadeh, Former Vice President of Product and Software Development
16.5. AlgoSurg
16.5.1. Company Overview
16.5.2. Interview Transcript: Vikas Karade, Founder, Chief Executive Officer
16.6. ContextVision
16.6.1. Company Overview
16.6.2. Interview Transcript: Walter de Back, Former Research Scientist
16.7. Advenio Technosys
16.7.1. Company Overview
16.7.2. Interview Transcript: Mausumi Acharya, Chief Executive Officer
16.8. Arterys
16.8.1. Company Overview
16.8.2. Interview Transcript: Carla Leibowitz, Head of Strategy and Marketing
16.9. Arya.ai
16.9.1. Company Overview
16.9.2. Interview Transcript: Deekshith Marla, Founder and Chief Technology Officer and Sanjay Bhadra, Chief Business Officer
17. APPENDIX 1: TABULATED DATA
18. APPENDIX 2: LIST OF COMPANIES AND ORGANIZATIONS
Figure 2.1 Executive Summary: Market Overview (Deep Learning in Drug Discovery)
Figure 2.2 Executive Summary: Market Overview (Deep Learning in Diagnostics)
Figure 2.3 Executive Summary: Clinical Trial Analysis
Figure 2.4 Executive Summary: Funding and Investment Analysis
Figure 2.5 Executive Summary: Start-up Health Indexing
Figure 2.6 Executive Summary: Company Valuation Analysis
Figure 2.7 Executive Summary: Market Sizing and Opportunity Analysis (Deep Learning in Drug Discovery)
Figure 2.8 Executive Summary: Market Sizing and Opportunity Analysis (Deep Learning in Diagnostics)
Figure 3.1 Key Stages of Observational Learning
Figure 3.2 Understanding Neurons and the Human Brain: Key Scientific Contributors
Figure 3.3 Big Data: The Three V’s
Figure 3.4 Internet of Things: Framework
Figure 3.5 Internet of Things: Applications in Healthcare
Figure 3.6 Big Data: Application Areas
Figure 3.7 Big Data: Opportunities in Healthcare
Figure 3.8 Machine Learning Algorithm: Workflow
Figure 3.9 Neural Networks: Architecture
Figure 3.10 Deep Learning: Image Recognition
Figure 3.11 Deep Learning Frameworks: Relative Performance
Figure 3.12 Personalized Medicine: Applications in Healthcare
Figure 4.1 Deep Learning in Drug Discovery: Distribution by Year of Establishment
Figure 4.2 Deep Learning in Drug Discovery: Distribution by Company Size
Figure 4.3 Deep Learning in Drug Discovery: Distribution by Location of Headquarters (Region-wise)
Figure 4.4 Deep Learning in Drug Discovery: Distribution by Location of Headquarters (Country-wise)
Figure 4.5 Deep Learning in Drug Discovery: Distribution by Application Area
Figure 4.6 Deep Learning in Drug Discovery: Distribution by Focus Area
Figure 4.7 Deep Learning in Drug Discovery: Distribution by Therapeutic Area
Figure 4.8 Deep Learning in Drug Discovery: Distribution by Operational Model
Figure 4.9 Deep Learning in Drug Discovery: Distribution by Company Size and Operational Model
Figure 4.10 Deep Learning in Drug Discovery: Distribution by Service Centric Model
Figure 4.11 Deep Learning in Drug Discovery: Distribution by Product Centric Model
Figure 5.1 Deep Learning in Diagnostics: Distribution by Year of Establishment
Figure 5.2 Deep Learning in Diagnostics: Distribution by Company Size
Figure 5.3 Deep Learning in Diagnostics: Distribution by Location of Headquarters (Region-wise)
Figure 5.4 Deep Learning in Diagnostics: Distribution by Location of Headquarters (Country-wise)
Figure 5.5 Deep Learning in Diagnostics: Distribution by Application Area
Figure 5.6 Deep Learning in Diagnostics: Distribution by Focus Area
Figure 5.7 Deep Learning in Diagnostics: Distribution by Therapeutic Area
Figure 5.8 Deep Learning in Diagnostics: Distribution by Type of Offering / Solution
Figure 5.9 Deep Learning in Diagnostics: Distribution by Company Size and Type of Offering / Solution
Figure 5.10 Deep Learning in Diagnostics: Distribution by Compatible Device
Figure 6.1 Aegicare: Deep Learning Derived Service Portfolio
Figure 6.2 Aiforia Technologies: Annual Revenues, 2019-H1 2022 (EUR Thousand)
Figure 6.3 Aiforia Technologies: Deep Learning Derived Service Portfolio
Figure 6.4 Ardigen: Annual Revenues, 2019-9M 2022 (EUR Million)
Figure 6.5 Ardigen: Deep Learning Derived Service Portfolio
Figure 6.6 Berg: Deep Learning Derived Service Portfolio
Figure 6.7 Google: Annual Revenues, 2019-2022 (USD Billion)
Figure 6.8 Google: Deep Learning Derived Service Portfolio
Figure 6.9 Huawei: Annual Revenues, 2019-9M 2022 (CNY Billion)
Figure 6.10 Huawei: Deep Learning Derived Service Portfolio
Figure 6.11 Merative: Deep Learning Derived Service Portfolio
Figure 6.12 Nference: Deep Learning Derived Service Portfolio
Figure 6.13 Nvidia: Annual Revenues, 2019-2022 (USD Billion)
Figure 6.14 Nvidia: Deep Learning Derived Service Portfolio
Figure 6.15 Owkin: Deep Learning Derived Service Portfolio
Figure 6.16 Phenomic AI: Deep Learning Derived Service Portfolio
Figure 6.17 Pixel AI: Deep Learning Derived Service Portfolio
Figure 7.1 Porter’s Five Forces: Key Parameters
Figure 7.2 Threats of New Entrants: Key Factors
Figure 7.3 Bargaining Power of Companies Focused on Deep Learning: Key Factors
Figure 7.4 Bargaining Power of Drug Developers: Key Factors
Figure 7.5 Threats of Substitute Technologies: Key Factors
Figure 7.6 Rivalry Among Existing Competitors: Key Factors
Figure 7.7 Porter’s Five Forces: Concluding Remarks
Figure 8.1 Clinical Trial Analysis: Scope and Methodology
Figure 8.2 Clinical Trial Analysis: Distribution by Trial Registration Year, Pre-2018-2022
Figure 8.3 Clinical Trial Analysis: Distribution by Trial Status
Figure 8.4 Clinical Trial Analysis: Distribution by Trial Registration Year and Patient Enrollment, 2019-2022
Figure 8.5 Clinical Trial Analysis: Distribution by Trial Registration Year and Trial Status, Pre-2018-2022
Figure 8.6 Clinical Trial Analysis: Distribution by Type of Sponsor / Collaborator
Figure 8.7 Clinical Trial Analysis: Distribution by Therapeutic Area
Figure 8.8 Word Cloud: Trial Focus Area
Figure 8.9 Clinical Trial Analysis: Distribution by Study Design
Figure 8.10 Clinical Trial Analysis: Geographical Distribution of Trials
Figure 8.11 Clinical Trial Analysis: Geographical Distribution by Trial Registration Year and Patient Enrollment
Figure 8.12 Leading Organizations: Distribution by Number of Registered Trials
Figure 9.1 Funding and Investment Analysis: Cumulative Distribution of Number of Instances by Year, 2019-2022
Figure 9.2 Funding and Investment Analysis: Cumulative Distribution of Amount Invested, 2019-2022 (USD Million)
Figure 9.3 Funding and Investment Analysis: Distribution of Instances by Type of Funding
Figure 9.4 Funding and Investment Analysis: Distribution of Amount Invested by Type of Funding (USD Million)
Figure 9.5 Funding and Investment Analysis: Distribution of Instances by Year and Type of Funding
Figure 9.6 Funding and Investment Analysis: Distribution of Instances by Focus Area
Figure 9.7 Funding and Investment Analysis: Distribution Instances by Therapeutic Area
Figure 9.8 Funding and Investment Analysis: Geographical Distribution of Funding Instances
Figure 9.9 Funding and Investment Analysis: Geographical Distribution by Amount Invested (USD Million)
Figure 9.10 Most Active Players: Distribution by Number of Funding Instances
Figure 9.11 Most Active Players: Distribution by Amount Invested (USD Million)
Figure 9.12 Most Active Investors: Distribution by Number of Funding Instances
Figure 9.13 Summary of Funding and Investments, 2019-2022 (USD Million)
Figure 10.1 Start-ups Focused on Deep Learning in Drug Discovery: Distribution by Location of Headquarters
Figure 10.2 Start-ups Focused on Deep Learning in Drug Discovery: Distribution by Focus Area
Figure 10.3 Start-ups Focused on Deep Learning in Drug Discovery: Distribution by Therapeutic Area
Figure 10.4 Start-ups Focused on Deep Learning in Drug Discovery: Distribution by Operational Model
Figure 10.5 Start-ups Focused on Deep Learning in Drug Discovery: Roots Analysis Perspective
Figure 10.6 Start-ups Focused on Deep Learning in Drug Discovery: Wind Rose Analysis
Figure 10.7 Start-ups Focused on Deep Learning in Diagnostics: Distribution by Location of Headquarters
Figure 10.8 Start-ups Focused on Deep Learning in Diagnostics: Distribution by Focus Area
Figure 10.9 Start-ups Focused on Deep Learning in Diagnostics: Distribution by Therapeutic Area
Figure 10.10 Start-ups Focused on Deep Learning in Diagnostics: Distribution by Compatible Device
Figure 10.11 Start-ups Focused on Deep Learning in Diagnostics: Distribution by Type of Offering
Figure 10.12 Start-ups Focused on Deep Learning in Diagnostics: Roots Analysis Perspective
Figure 10.13 Start-ups Focused on Deep Learning in Diagnostics: Wind Rose Analysis
Figure 12.1 Overall Deep Learning in Drug Discovery Market, 2023-2035 (USD Billion)
Figure 12.2 Deep Learning in Drug Discovery Market: Distribution by Target Therapeutic Area, 2023-2035 (USD Million)
Figure 12.3 Deep Learning in Drug Discovery Market for Oncological Disorders, 2023-2035 (USD Million)
Figure 12.4 Deep Learning in Drug Discovery Market for Infectious Diseases, 2023-2035 (USD Million)
Figure 12.5 Deep Learning in Drug Discovery Market for Neurological Disorders, 2023-2035 (USD Million)
Figure 12.6 Deep Learning in Drug Discovery Market for Immunological Disorders, 2023-2035 (USD Million)
Figure 12.7 Deep Learning in Drug Discovery Market for Endocrine Disorders, 2023-2035 (USD Million)
Figure 12.8 Deep Learning in Drug Discovery Market for Cardiovascular Disorders, 2023-2035 (USD Million)
Figure 12.9 Deep Learning in Drug Discovery Market for Respiratory Disorders, 2023-2035 (USD Million)
Figure 12.10 Deep Learning in Drug Discovery Market for Other Disorders, 2023-2035 (USD Million)
Figure 12.11 Deep Learning in Drug Discovery Market: Distribution by Key Geographical Regions, 2023-2035 (USD Million)
Figure 12.12 Deep Learning in Drug Discovery Market in North America, 2023-2035 (USD Million)
Figure 12.13 Deep Learning in Drug Discovery Market in the US, 2023-2035 (USD Million)
Figure 12.14 Deep Learning in Drug Discovery Market in Canada, 2023-2035 (USD Million)
Figure 12.15 Deep Learning in Drug Discovery Market in Europe, 2023-2035 (USD Million)
Figure 12.16 Deep Learning in Drug Discovery Market in the UK, 2023-2035 (USD Million)
Figure 12.17 Deep Learning in Drug Discovery Market in France, 2023-2035 (USD Million)
Figure 12.18 Deep Learning in Drug Discovery Market in Germany, 2023-2035 (USD Million)
Figure 12.19 Deep Learning in Drug Discovery Market in Spain, 2023-2035 (USD Million)
Figure 12.20 Deep Learning in Drug Discovery Market in Italy, 2023-2035 (USD Million)
Figure 12.21 Deep Learning in Drug Discovery Market in Rest of Europe, 2023-2035 (USD Million)
Figure 12.22 Deep Learning in Drug Discovery Market in Asia Pacific, 2023-2035 (USD Million)
Figure 12.23 Deep Learning in Drug Discovery Market in China, 2023-2035 (USD Million)
Figure 12.24 Deep Learning in Drug Discovery Market in India, 2023-2035 (USD Million)
Figure 12.25 Deep Learning in Drug Discovery Market in Japan, 2023-2035 (USD Million)
Figure 12.26 Deep Learning in Drug Discovery Market in Australia, 2023-2035 (USD Million)
Figure 12.27 Deep Learning in Drug Discovery Market in South Korea, 2023-2035 (USD Million)
Figure 12.28 Deep Learning in Drug Discovery Market in Rest of the World, 2023-2035 (USD Million)
Figure 12.29 Likely Cost Saving Potential Associated with the Use of Deep Learning in Drug Discovery, 2023-2035 (USD Billion)
Figure 13.1 Overall Deep Learning in Diagnostics Market, 2023-2035 (USD Billion)
Figure 13.2 Deep Learning in Diagnostics Market: Distribution by Target Therapeutic Area, 2023-2035 (USD Million)
Figure 13.3 Deep Learning in Diagnostics Market for Oncological Disorders, 2023-2035 (USD Million)
Figure 13.4 Deep Learning in Diagnostics Market for Cardiovascular Disorders, 2023-2035 (USD Million)
Figure 13.5 Deep Learning in Diagnostics Market for Neurological Disorders, 2023-2035 (USD Million)
Figure 13.6 Deep Learning in Diagnostics Market for Endocrine Disorders, 2023-2035 (USD Million)
Figure 13.7 Deep Learning in Diagnostics Market for Respiratory Disorders, 2023-2035 (USD Million)
Figure 13.8 Deep Learning in Diagnostics Market for Ophthalmic Disorders, 2023-2035 (USD Million)
Figure 13.9 Deep Learning in Diagnostics Market for Infectious Diseases, 2023-2035 (USD Million)
Figure 13.10 Deep Learning in Diagnostics Market for Musculoskeletal Disorders, 2023-2035 (USD Million)
Figure 13.11 Deep Learning in Diagnostics Market for Inflammatory Disorders, 2023-2035 (USD Million)
Figure 13.12 Deep Learning in Diagnostics Market for Other Disorders, 2023-2035 (USD Million)
Figure 13.13 Deep Learning in Diagnostics Market: Distribution by Key Geographical Regions, 2023-2035 (USD Million)
Figure 13.14 Deep Learning in Diagnostics Market in North America, 2023-2035 (USD Million)
Figure 13.15 Deep Learning in Diagnostics Market in Europe, 2023-2035 (USD Million)
Figure 13.16 Deep Learning in Diagnostics Market in Asia Pacific, 2023-2035 (USD Million)
Figure 13.17 Deep Learning in Diagnostics Market in Rest of the World, 2023-2035 (USD Million)
Figure 15.1 Concluding Remarks: Market Overview (Deep Learning in Drug Discovery)
Figure 15.2 Concluding Remarks: Market Overview (Deep Learning in Diagnostics)
Figure 15.3 Concluding Remarks: Clinical Trial Analysis
Figure 15.4 Concluding Remarks: Funding and Investment Analysis
Figure 15.5 Concluding Remarks: Start-up Health Indexing
Figure 15.6 Concluding Remarks: Company Valuation Analysis
Figure 15.7 Concluding Remarks: Market Sizing and Opportunity Analysis (Deep Learning in Drug Discovery)
Figure 15.8 Concluding Remarks: Market Sizing and Opportunity Analysis (Deep Learning in Diagnostics)
Table 3.1 Machine Learning: A Brief History
Table 4.1 Deep Learning in Drug Discovery: List of Service / Technology Providers
Table 4.2 Deep Learning in Drug Discovery Services / Technology Providers: Information on Application Area, Focus Area, Therapeutic Area and Operational Model
Table 4.3 Deep Learning in Drug Discovery Services / Technology Providers: Information on Operational Model
Table 4.4 Deep Learning in Drug Discovery Services / Technology Providers: Information on Service Centric Model
Table 4.5 Deep Learning in Drug Discovery Services / Technology Providers: Information on Product Centric Model
Table 5.1 Deep Learning in Diagnostics: List of Service / Technology Providers
Table 5.2 Deep Learning in Diagnostics Services / Technology Providers: Information on Application Area, Focus Area and Therapeutic Area
Table 5.3 Deep Learning in Diagnostics Services / Technology Providers: Information on Type of Offering / Solution and Compatible Device
Table 6.1 List of Companies Profiled
Table 6.2 Aegicare: Company Overview
Table 6.3 Aiforia Technologies: Company Overview
Table 6.4 Aiforia Technologies: Recent Developments and Future Outlook
Table 6.5 Ardigen: Company Overview
Table 6.6 Ardigen: Recent Developments and Future Outlook
Table 6.7 Berg: Company Overview
Table 6.8 Berg: Recent Developments and Future Outlook
Table 6.9 Google: Company Overview
Table 6.10 Google: Recent Developments and Future Outlook
Table 6.11 Huawei: Company Overview
Table 6.12 Huawei: Recent Developments and Future Outlook
Table 6.13 Merative: Company Overview
Table 6.14 Nference: Company Overview
Table 6.15 Nference: Recent Developments and Future Outlook
Table 6.16 Nvidia: Company Overview
Table 6.17 Nvidia: Recent Developments and Future Outlook
Table 6.18 Owkin: Company Overview
Table 6.19 Owkin: Recent Developments and Future Outlook
Table 6.20 Phenomic AI: Company Overview
Table 6.21 Pixel AI: Company Overview
Table 9.1 Deep Learning Market: List of Funding and Investments, 2019-2022
Table 9.2 Funding and Investment Analysis: Summary of Investments
Table 9.3 Funding and Investment Analysis: Summary of Venture Capital Funding
Table 10.1 List of Start-ups Focused on Deep Learning in Drug Discovery
Table 10.2 List of Start-ups Focused on Deep Learning in Diagnostics
Table 11.1 Company Valuation Analysis: Scoring Sheet
Table 11.2 Company Valuation Analysis: Estimated Valuation by Years of Experience
Table 11.3 Company Valuation Analysis: Estimated Valuation by Employee Strength
Table 16.1 Mediwhale: Key Highlights
Table 16.2 Advenio Technosys: Key Highlights
Table 16.3 Arterys: Key Highlights
Table 16.4 Arya.ai: Key Highlights
Table 17.1 Deep Learning in Drug Discovery: Distribution by Year of Establishment
Table 17.2 Deep Learning in Drug Discovery: Distribution by Company Size
Table 17.3 Deep Learning in Drug Discovery: Distribution by Location of Headquarters (Region-wise)
Table 17.4 Deep Learning in Drug Discovery: Distribution by Location of Headquarters (Country-wise)
Table 17.5 Deep Learning in Drug Discovery: Distribution by Application Area
Table 17.6 Deep Learning in Drug Discovery: Distribution by Focus Area
Table 17.7 Deep Learning in Drug Discovery: Distribution by Therapeutic Area
Table 17.8 Deep Learning in Drug Discovery: Distribution by Operational Model
Table 17.9 Deep Learning in Drug Discovery: Distribution by Company Size and Operational Model
Table 17.10 Deep Learning in Drug Discovery: Distribution by Service Centric Model
Table 17.11 Deep Learning in Drug Discovery: Distribution by Product Centric Model
Table 17.12 Deep Learning in Diagnostics: Distribution by Year of Establishment
Table 17.13 Deep Learning in Diagnostics: Distribution by Company Size
Table 17.14 Deep Learning in Diagnostics: Distribution by Location of Headquarters (Region-wise)
Table 17.15 Deep Learning in Diagnostics: Distribution by Location of Headquarters (Country-wise)
Table 17.16 Deep Learning in Diagnostics: Distribution by Application Area
Table 17.17 Deep Learning in Diagnostics: Distribution by Focus Area
Table 17.18 Deep Learning in Diagnostics: Distribution by Therapeutic Area
Table 17.19 Deep Learning in Diagnostics: Distribution by Type of Offering / Solution
Table 17.20 Deep Learning in Diagnostics: Distribution by Company Size and Type of Offering / Solution
Table 17.21 Deep Learning in Diagnostics: Distribution by Compatible Device
Table 17.22 Aiforia Technologies: Annual Revenues, 2019 - H1 2022 (EUR Thousand)
Table 17.23 Ardigen: Annual Revenues, 2019 - 9M 2022 (EUR Million)
Table 17.24 Google: Annual Revenues, 2019-2022 (USD Billion)
Table 17.25 Huawei: Annual Revenues, 2019 - 9M 2022 (CNY Billion)
Table 17.26 Nvidia: Annual Revenues, 2019-2022 (USD Billion)
Table 17.27 Clinical Trial Analysis: Distribution by Trial Registration Year, Pre-2018 - 2022
Table 17.28 Clinical Trial Analysis: Distribution by Trial Status
Table 17.29 Clinical Trial Analysis: Distribution by Trial Registration Year and Patient Enrollment, 2019-2022
Table 17.30 Clinical Trial Analysis: Distribution by Trial Registration Year and Trial Status, Pre-2018 - 2022
Table 17.31 Clinical Trial Analysis: Distribution by Type of Sponsor / Collaborator
Table 17.32 Clinical Trial Analysis: Distribution by Therapeutic Area
Table 17.33 Clinical Trial Analysis: Distribution by Study Design
Table 17.34 Clinical Trial Analysis: Geographical Distribution of Trials
Table 17.35 Clinical Trial Analysis: Geographical Distribution by Trial Registration Year and Enrolled Patient Population
Table 17.36 Leading Organizations: Distribution by Number of Registered Trials
Table 17.37 Funding and Investment Analysis: Cumulative Distribution of Number of Instances by Year, 2019-2022
Table 17.38 Funding and Investment Analysis: Cumulative Distribution of Amount Invested, 2019-2022 (USD Million)
Table 17.39 Funding and Investment Analysis: Distribution of Instances by Type of Funding
Table 17.40 Funding and Investment Analysis: Distribution of Amount Invested by Type of Funding (USD Million)
Table 17.41 Funding and Investment Analysis: Distribution of Instances by Year and Type of Funding
Table 17.42 Funding and Investments: Distribution of Instances by Focus Area
Table 17.43 Funding and Investment Analysis: Distribution of Instances by Therapeutic Area
Table 17.44 Funding and Investment Analysis: Geographical Distribution of Funding Instances
Table 17.45 Funding and Investment Analysis: Geographical Distribution by Amount Invested (USD Million)
Table 17.46 Most Active Players: Distribution by Number of Funding Instances
Table 17.47 Most Active Players: Distribution by Amount Invested (USD Million)
Table 17.48 Most Active Investors: Distribution by Number of Funding Instances
Table 17.49 Start-ups Focused on Deep Learning in Drug Discovery: Distribution by Location of Headquarters
Table 17.50 Start-ups Focused on Deep Learning in Drug Discovery: Distribution by Focus Area
Table 17.51 Start-ups Focused on Deep Learning in Drug Discovery: Distribution by Therapeutic Area
Table 17.52 Start-ups Focused on Deep Learning in Drug Discovery: Distribution by Operational Model
Table 17.53 Start-ups Focused on Deep Learning in Diagnostics: Distribution by Location of Headquarters
Table 17.54 Start-ups Focused on Deep Learning in Diagnostics: Distribution by Focus Area
Table 17.55 Start-ups Focused on Deep Learning in Diagnostics: Distribution by Therapeutic Area
Table 17.56 Start-ups Focused on Deep Learning in Diagnostics: Distribution by Compatible Device
Table 17.57 Start-ups Focused on Deep Learning in Diagnostics: Distribution by Type of Offering
Table 17.58 Overall Deep Learning in Drug Discovery Market: Conservative, Base and Optimistic Scenarios, 2023-2035 (USD Billion)
Table 17.59 Deep Learning in Drug Discovery Market: Distribution by Therapeutic Area, 2023-2035 (USD Million)
Table 17.60 Deep Learning in Drug Discovery Market for Oncological Disorders: Conservative, Base and Optimistic Scenarios, 2023-2035 (USD Million)
Table 17.61 Deep Learning in Drug Discovery Market for Infectious Diseases: Conservative, Base and Optimistic Scenarios, 2023-2035 (USD Million)
Table 17.62 Deep Learning in Drug Discovery Market for Neurological Disorders: Conservative, Base and Optimistic Scenarios, 2023-2035 (USD Million)
Table 17.63 Deep Learning in Drug Discovery Market for Immunological Disorders: Conservative, Base and Optimistic Scenarios, 2023-2035 (USD Million)
Table 17.64 Deep Learning in Drug Discovery Market for Endocrine Disorders: Conservative, Base and Optimistic Scenarios, 2023-2035 (USD Million)
Table 17.65 Deep Learning in Drug Discovery Market for Cardiovascular Disorders: Conservative, Base and Optimistic Scenarios, 2023-2035 (USD Million)
Table 17.66 Deep Learning in Drug Discovery Market for Respiratory Disorders: Conservative, Base and Optimistic Scenarios, 2023-2035 (USD Million)
Table 17.67 Deep Learning in Drug Discovery Market for Other Disorders: Conservative, Base and Optimistic Scenarios, 2023-2035 (USD Million)
Table 17.68 Deep Learning in Drug Discovery Market: Distribution by Geography, 2023-2035 (USD Billion)
Table 17.69 Deep Learning in Drug Discovery Market in North America: Conservative, Base and Optimistic Scenarios, 2023-2035 (USD Million)
Table 17.70 Deep Learning in Drug Discovery Market in the US: Conservative, Base and Optimistic Scenarios, 2023-2035 (USD Million)
Table 17.71 Deep Learning in Drug Discovery Market in Canada: Conservative, Base and Optimistic Scenarios, 2023-2035 (USD Million)
Table 17.72 Deep Learning in Drug Discovery Market in Europe: Conservative, Base and Optimistic Scenarios, 2023-2035 (USD Million)
Table 17.73 Deep Learning in Drug Discovery Market in the UK: Conservative, Base and Optimistic Scenarios, 2023-2035 (USD Million)
Table 17.74 Deep Learning in Drug Discovery Market in France: Conservative, Base and Optimistic Scenarios, 2023-2035 (USD Million)
Table 17.75 Deep Learning in Drug Discovery Market in Germany: Conservative, Base and Optimistic Scenarios, 2023-2035 (USD Million)
Table 17.76 Deep Learning in Drug Discovery Market in Spain: Conservative, Base and Optimistic Scenarios, 2023-2035 (USD Million)
Table 17.77 Deep Learning in Drug Discovery Market in Italy: Conservative, Base and Optimistic Scenarios, 2023-2035 (USD Million)
Table 17.78 Deep Learning in Drug Discovery Market in Rest of Europe: Conservative, Base and Optimistic Scenarios, 2023-2035 (USD Million)
Table 17.79 Deep Learning in Drug Discovery Market in Asia Pacific: Conservative, Base and Optimistic Scenarios, 2023-2035 (USD Million)
Table 17.80 Deep Learning in Drug Discovery Market in China: Conservative, Base and Optimistic Scenarios, 2023-2035 (USD Million)
Table 17.81 Deep Learning in Drug Discovery Market in India: Conservative, Base and Optimistic Scenarios, 2023-2035 (USD Million)
Table 17.82 Deep Learning in Drug Discovery Market in Japan: Conservative, Base and Optimistic Scenarios, 2023-2035 (USD Million)
Table 17.83 Deep Learning in Drug Discovery Market in Australia: Conservative, Base and Optimistic Scenarios, 2023-2035 (USD Million)
Table 17.84 Deep Learning in Drug Discovery Market in South Korea: Conservative, Base and Optimistic Scenarios, 2023-2035 (USD Million)
Table 17.85 Deep Learning in Drug Discovery Market in Rest of the World: Conservative, Base and Optimistic Scenarios, 2023-2035 (USD Million)
Table 17.86 Likely Cost Saving Potential Associated with the Use of Deep Learning in Drug Discovery, 2023-2035 (USD Billion)
Table 17.87 Overall Deep Learning in Diagnostics Market: Conservative, Base and Optimistic Scenarios, 2023-2035 (USD Billion)
Table 17.88 Deep Learning in Diagnostics Market: Distribution by Therapeutic Area, 2023-2035 (USD Billion)
Table 17.89 Deep Learning in Diagnostics Market for Oncological Disorders: Conservative, Base and Optimistic Scenarios, 2023-2035 (USD Million)
Table 17.90 Deep Learning in Diagnostics Market for Cardiovascular Disorders: Conservative, Base and Optimistic Scenarios, 2023-2035 (USD Million)
Table 17.91 Deep Learning in Diagnostics Market for Neurological Disorders: Conservative, Base and Optimistic Scenarios, 2023-2035 (USD Million)
Table 17.92 Deep Learning in Diagnostics Market for Endocrine Disorders: Conservative, Base and Optimistic Scenarios, 2023-2035 (USD Million)
Table 17.93 Deep Learning in Diagnostics Market for Respiratory Disorders: Conservative, Base and Optimistic Scenarios, 2023-2035 (USD Million)
Table 17.94 Deep Learning in Diagnostics Market for Ophthalmic Disorders: Conservative, Base and Optimistic Scenarios, 2023-2035 (USD Million)
Table 17.95 Deep Learning in Diagnostics Market for Infectious Diseases: Conservative, Base and Optimistic Scenarios, 2023-2035 (USD Million)
Table 17.96 Deep Learning in Diagnostics Market for Musculoskeletal Disorders: Conservative, Base and Optimistic Scenarios, 2023-2035 (USD Million)
Table 17.97 Deep Learning in Diagnostics Market for Inflammatory Disorders: Conservative, Base and Optimistic Scenarios, 2023-2035 (USD Million)
Table 17.98 Deep Learning in Diagnostics Market for Other Disorders: Conservative, Base and Optimistic Scenarios, 2023-2035 (USD Million)
Table 17.99 Deep Learning in Diagnostics Market: Distribution by Key Geographical Regions, 2023-2035 (USD Billion)
Table 17.100 Deep Learning in Diagnostics Market in North America: Conservative, Base and Optimistic Scenarios, 2023-2035 (USD Million)
Table 17.101 Deep Learning in Diagnostics Market in Europe: Conservative, Base and Optimistic Scenarios, 2023-2035 (USD Million)
Table 17.102 Deep Learning in Diagnostics Market in Asia Pacific: Conservative, Base and Optimistic Scenarios, 2023-2035 (USD Million)
Table 17.103 Deep Learning in Diagnostics Market in Rest of the World: Conservative, Base and Optimistic Scenarios, 2023-2035 (USD Million)
The following companies and organizations have been mentioned in the report: