Lowest Price Guaranteed From USD 4,799
Published
February 2023
Slides
178
View Count
10925
Example Insights
Please check below for insights
Report Description
The global quantum computing market in drug discovery is estimated to be USD 411 million in 2022 and is anticipated to grow at a CAGR of 13.6% during the forecast period. The early stages of research related to drug discovery, including the identification of a relevant biological target and a viable lead compound, play an important role in the overall success of a drug candidate in preclinical and clinical studies. The process of drug development, beginning from the discovery of a pharmacological lead to its commercial launch, is estimated to take around 10-15 years, involving capital investments in the range of USD 4 billion - USD 10 billion. Over time, the complexities associated with drug discovery have increased, specifically, for large molecules, which are inherently more complex than small molecule drugs. In order to overcome various challenges related to drug discovery, such as rising capital requirements and failure of late-stage programs, several pharmaceutical players are currently exploring the implementation of quantum computing in drug discovery processes. Quantum computing is a process that uses laws of quantum mechanics to solve large and complex problems in a short span as compared to the computer-aided drug discovery. Currently, there are several quantum computing related approaches that are being used in the drug discovery process alone, such as structure-based drug design, fragment-based drug discovery and ligand-based drug discovery. The predictive power of quantum computing has proven to reduce the complexity, cost and time investment in the overall drug discovery procedure by allowing researchers to bypass the random screening of billions of molecules in a short span of time. As a result, the pharmaceutical industry stakeholders have started relying on the companies offering quantum computing software and hardware to support drug discovery. Furthermore, considering the various initiatives being undertaken actively by quantum computing companies, we are led to believe that the opportunity for stakeholders in this niche, upcoming industry is likely to grow at a steady pace in the foreseen future.
![]() |
![]() |
![]() |
The Quantum Computing Market in Drug Discovery: Distribution by Drug Discovery Service Offered (Target Identification / Validation, Hit Generation / Lead Identification and Lead Optimization), Therapeutic Area (Cardiovascular Disorders, CNS Disorders, Dermatological Disorders, Endocrine Disorders, Gastrointestinal Disorders, Immunological Disorders, Infectious Diseases, Musculoskeletal Disorders, Oncological Disorders, Respiratory Disorders and Others), and Key Geographical Regions (North America (US and Canada), Europe (UK, France, Germany and Rest of the Europe), Asia-Pacific (China, Japan and Rest of the Asia Pacific), Latin America and Middle East and North Africa): Industry Trends and Global Forecasts, 2023-2035 report features an extensive study of the current market landscape, market size and future potential of quantum computing in drug discovery market. The report highlights the efforts of several stakeholders engaged in this rapidly emerging segment of the pharmaceutical industry. The report answers many key questions related to this domain.
Quantum computing is a rapidly emerging technology that uses quantum mechanism to solve large and complex problems in a short span of time as compared to traditional computers. Quantum computing has created a huge impact on the pharmaceutical industry in a short time period. It has wide applications in the pharmaceutical industry / medicine in areas such as drug discovery, disease analysis and diagnosis. Various industry stakeholders are integrating quantum computing for the discovery and development of drugs. Presently, quantum computing is used for the discovery and development of drugs owing to its capability of screening billions of molecules for specific targets in a short span of time. This procedure reduces the complexity and helps in saving time and cost associated with the drug discovery process. Quantum technology is supporting several steps within drug discovery from target identification to lead optimization.
Owing to the various benefits of quantum computing, such as big data processing and complex molecular modeling for minimizing cost and time investment, the adoption rate of quantum computing in pharmaceutical industry is expected to increase rapidly during the forecast period.
The companies supporting drug discovery efforts include both quantum computing software providers and quantum computing hardware providers. Software companies claim to offer services across various types of drug discovery steps. Further, these are focused on different types of therapeutic areas, primarily including oncological disorders, infectious diseases and cardiovascular disorders. Hardware companies primarily offer hardware as a service; some of the players also offer the option of purchasing the hardware directly.
Currently, various partnerships have been inked for application of quantum computing in drug discovery. Majority of these partnerships are research and development agreements, followed by platform utilization agreements. Drug developers require support from both quantum computing software and hardware developers. In July 2021, Riverlane and Astex Pharmaceuticals announced their collaboration with Rigetti Computing to utilize their quantum systems along with Riverlane’s algorithm expertise to develop molecular models of chemical compounds and study their interaction with proteins in the human body. Another UK based company, Quantinnum, launched its quantum computational chemistry software named InQuanto in 2022. The company collaborated with an undisclosed big pharmaceutical developer for quantifying drug-protein interactions. Collaborations will be inevitable in this market and will put forward quantum computing use cases for the pharmaceutical industry. We expect the quantum computing software and hardware companies to increasingly collaborate with the drug developers to provide a solution to the drug discovery and drug design challenges, driving the market growth during the forecast period.
In addition to the partnerships and collaboration between the industry players, a number of academic institutes are collaborating with quantum computing software and hardware companies on projects to accelerate the use of quantum computing in drug discovery and development. Such projects are receiving grants from several non-profit organizations. Currently, more than 170 grants have been awarded to various organizations, primarily focused on quantum computing in drug discovery. Further, it is important to mention that the maximum number of grants have been awarded under type 5 category. In late 2022, a team of researchers at Pennsylvania State University received USD 1.2 million grant from the National Science Foundation to design drugs targeting Ras family for treatment of cancer. In the UK as well, Innovate UK’s Industrial Strategy Challenge Fund provided a GBP 6.85 million grant to SEEQC for development of a full-stack quantum computer for Merck. Riverlane, Oxford Instruments, the University of Oxford, Medicines Discovery Catapult, and members from the Science and Technology Facilities Council, including the UK’s National Quantum Computing Centre are all part of the consortium led by SEEQC which is responsible for the project.
As the adoption of quantum computing in drug discovery increases amongst innovators in the pharmaceutical and biopharmaceutical industries, lucrative opportunities are expected to emerge for players offering services for quantum computing in drug discovery. The global quantum computing market, focused on drug discovery is expected to grow at a CAGR of ~14% from 2023 to 2035.
North America currently holds nearly 50% share of the quantum computing market for drug discovery. This region will continue to drive the market growth during the forecast period with an estimated CAGR of 14% from 2023 – 2035. A number of start-ups working on improving the drug discovery process using quantum computing are based in North America and Europe. One such company in the US based quantum computing software developer, Zapata Computing, which was formed as a spin-off from Harvard University in 2017.
Examples of service providers engaged in quantum computing market (which have also been captured in this report) include (in alphabetic order) Accenture, Aurora Fine Chemicals, Amazon Web Services, Huawei, IBM, Microsoft, Fujitsu, Xanadu and XtalPi. This market report includes information on all the quantum computing software and hardware companies supporting the application of quantum technology in drug discovery.
Several recent developments have taken place in the field of quantum computing in drug discovery. We have outlined some of these recent initiatives below. These developments, even if they took place post the release of our market report, substantiate the overall market trends that have been outlined in our analysis.
![]() |
![]() |
![]() |
The quantum computing report features an in-depth analysis of various firms / organizations that are engaged in supporting drug discovery, across different segments as defined in the table below:
Report Attribute | Details | |
Forecast Period |
2023 – 2035 |
|
Base Year | 2022 | |
Market Size 2022 |
$411 million |
|
CAGR |
13.6% |
|
Type of Drug Discovery Services Offered |
Target Identification / Validation, Hit Generation / Lead Identification, Lead Optimization |
|
Therapeutic Area |
Cardiovascular Disorders, CNS Disorders, Dermatological Disorders, Endocrine Disorders, Gastrointestinal Disorders, Immunological Disorders, Infectious Diseases, Musculoskeletal Disorders, Oncological Disorders, Respiratory Disorders, Other Indications |
|
Key Geographical Regions |
North America (US and Canada), Europe (UK, France, Germany and Rest of the Europe), Asia-Pacific (China, Japan and Rest of the Asia Pacific), Middle East and North Africa, Latin America | |
Key Companies Profiled |
Accenture, Amazon Web Services, Atos, Fujitsu, Huawei, IBM, Microsoft, Xanadu, XtalPi |
|
Customization Scope |
15% Free Customization Option (equivalent to 5 Analyst working days) |
|
Excel Data Packs (Complimentary) | Market Landscape Analysis, Company Competitiveness Analysis, Grant Analysis, Partnership and Collaboration Analysis, Market Forecast and Opportunity Analysis |
![]() |
![]() |
![]() |
The market report presents an in-depth analysis, highlighting the capabilities of various stakeholders engaged in this industry, across different geographies. Amongst other elements, the report includes:
One of the key objectives of the market report was to estimate the current market size, opportunity and future growth potential of quantum computing market in drug discovery over the forecast period. We have provided informed estimates on the likely evolution of the market for the period, 2023-2035. Our year-wise projections of the current and future opportunity have further been segmented based on relevant parameters, such as drug discovery services offered (target identification / validation, hit generation / lead identification and lead optimization), therapeutic area (cardiovascular disorders, CNS disorders, dermatological disorders, endocrine disorders, gastrointestinal disorders, immunological disorders, infectious diseases, musculoskeletal disorders, oncological disorders, respiratory disorders and others), and key geographical regions ((North America (US and Canada), Europe (UK, France, Germany and Rest of the Europe), Asia-Pacific (China, Japan and Rest of the Asia Pacific), Latin America and Middle East and North Africa). In order to account for future uncertainties associated with some of the key parameters and to add robustness to our model, we have provided three market forecast scenarios, namely conservative, base, and optimistic scenarios, representing different tracks of the industry’s evolution.
The opinions and insights presented in the report were influenced by discussions held with stakeholders in this domain. The market report features detailed transcripts of interviews held with the industry stakeholders.
All actual figures have been sourced and analyzed from publicly available information forums and primary research discussions. Financial figures mentioned in this report are in USD, unless otherwise specified.
![]() |
![]() |
Contents
1. PREFACE
1.1. Introduction
1.2. Key Market Insights
1.3. Scope of the Report
1.4. Research Methodology
1.5. Frequently Asked Questions
1.6. Chapter Outlines
2. EXECUTIVE SUMMARY
3. INTRODUCTION
3.1. Overview of Quantum Computing in Drug Discovery
3.2. Drug Discovery and Development Timeline
3.3. Historical Evolution of Computational Drug Discovery Approaches
3.4. Classification of Quantum Computing Approaches
3.5. Applications of Quantum Computing in Drug Discovery Process
3.6. Advantages of Quantum Computing in Drug Discovery
3.7. Challenges Associated with Quantum Computing in Drug Discovery
3.8. Future Perspectives
4. MARKET LANDSCAPE: SOFTWARE PROVIDERS
4.1. Quantum Computing Software Providers: Overall Market Landscape
4.1.1. Analysis by Year of Establishment
4.1.2. Analysis by Company Size
4.1.3. Analysis by Location of Headquarters
4.1.4. Analysis by Business Capabilities
4.1.5. Analysis by Platform Capabilities
4.1.6. Analysis by Type of Drug Discovery Service(s) Offered
4.1.7. Analysis by Type of Molecule(s) Supported
4.1.8. Analysis by Compatible Computational Approaches
4.1.9. Analysis by End User(s)
4.1.10. Analysis by Therapeutic Area(s)
5. COMPANY COMPETITIVENESS ANALYSIS
5.1. Methodology and Key Parameters
5.2 Scoring Criteria
5.3. Company Competitiveness Analysis: Players based in North America (Peer Group I)
5.4. Company Competitiveness Analysis: Players based in Europe (Peer Group II)
5.5. Company Competitiveness Analysis: Players based in Asia-Pacific and Rest of the World (Peer Group III)
6. COMPANY PROFILES: SOFTWARE PROVIDERS
6.1. Accenture
6.1.1. Company Overview
6.1.2. Financial Information
6.1.3. Service Portfolio
6.1.4. Recent Developments and Future Outlook
6.2. Atos
6.2.1. Company Overview
6.2.2. Financial Information
6.2.3. Service Portfolio
6.2.4. Recent Developments and Future Outlook
6.3. Fujitsu
6.3.1. Company Overview
6.3.2. Financial Information
6.3.3. Service Portfolio
6.3.4. Recent Developments and Future Outlook
6.4. Huawei
6.4.1. Company Overview
6.4.2. Financial Information
6.4.3. Service Portfolio
6.4.4. Recent Developments and Future Outlook
6.5. Microsoft
6.5.1. Company Overview
6.5.2. Financial Information
6.5.3. Service Portfolio
6.5.4. Recent Developments and Future Outlook
6.6. Xanadu
6.6.1. Company Overview
6.6.2. Service Portfolio
6.6.3. Recent Developments and Future Outlook
6.7. XtalPi
6.7.1. Company Overview
6.7.2. Service Portfolio
6.7.3. Recent Developments and Future Outlook
7. MARKET LANDSCAPE: HARDWARE PROVIDERS
7.1. Quantum Computing Hardware Providers: Overall Market Landscape
7.1.1. Analysis by Year of Establishment
7.1.2. Analysis by Company Size
7.1.3. Analysis by Region of Headquarters
7.1.4. Analysis by Location of Headquarters
7.1.5. Analysis by Type of Offering(s)
7.1.6. Analysis by Data Storage on Cloud
7.1.7. Analysis by Compatible Computational Approaches
7.1.8. Analysis by Type of Offering(s) and Compatible Computational Approaches
8. COMPANY PROFILES: HARDWARE PROVIDERS
8.1. Amazon Web Services
8.1.1. Company Overview
8.1.2. Financial Information
8.1.3. Service Portfolio
8.1.4. Recent Developments and Future Outlook
8.2. IBM
8.2.1. Company Overview
8.2.2. Financial Information
8.2.3. Service Portfolio
8.2.4. Recent Developments and Future Outlook
8.3. Microsoft
8.3.1. Company Overview
8.3.2. Financial Information
8.3.3. Service Portfolio
8.3.4. Recent Developments and Future Outlook
9. ACADEMIC GRANTS ANALYSIS
9.1. Analysis Methodology
9.2. Key Parameters
9.3. Analysis by Year of Grant
9.4. Analysis by Amount Awarded
9.5. Analysis by Support Period
9.6. Analysis by Study Section
9.7. Word Cloud Analysis: Emerging Focus Areas
9.8. Analysis by Administering Institute Center
9.9. Analysis by Type of Grant
9.10. Analysis by Activity Code
9.11. Analysis by Purpose of Grant
9.12. Analysis by Administering Institute Center and Support Period
9.13. Prominent Program Officers: Analysis by Number of Grants
9.14. Analysis by Location of Recipient Organizations
9.15. Analysis by Type of Organization
9.16. Popular Recipient Organizations: Analysis by Number of Grants
9.17. Popular Recipient Organizations: Analysis by Amount Awarded
10. PARTNERSHIPS AND COLLABORATIONS
10.1. Partnership Models
10.2. Quantum Computing in Drug Discovery, Drug Manufacturing and Other Services: Partnerships and Collaborations
10.3. Analysis by Year of Partnership
10.4. Analysis by Type of Partnership
10.5. Analysis by Year and Type of Partnership
10.6. Most Active Players: Analysis by Number of Partnerships
10.7. Word Cloud Analysis: Key Focus Areas
10.8. Analysis by Type of Continent
10.9. Analysis by Company Size and Type of Partnership
10.10. Local and Intercontinental Agreements
10.11. Intercontinental and Intracontinental Agreements
11. USE CASE STUDY
11.1. Overview of Quantum Computing
11.2. Applications of Quantum Computing Across Various Industries
11.3. Upcoming Trends in Quantum Computing
11.4. Future Perspectives
12. PORTER’S FIVE FORCES ANALYSIS
12.1. Methodology and Assumptions
12.2. Key Parameters
12.2.1. Threats of New Entrants
12.2.2. Bargaining Power of Buyers
12.2.3. Bargaining Power of Suppliers
12.2.4. Threats of Substitute Products
12.2.5. Rivalry among Existing Competitors
13. BLUE OCEAN STRATEGY: A STRATEGIC GUIDE FOR START-UPS TO ENTER INTO HIGHLY COMPETITIVE MARKET
13.1. Overview of Blue Ocean Strategy
13.1.1 Red Oceans
13.1.2 Blue Oceans
13.1.3 Comparison of Red Ocean Strategy and Blue Ocean Strategy
13.1.4. Quantum Computing in Drug Discovery Services Market: Blue Ocean Strategy and Shift Tools
13.1.4.1. Value Innovation
13.1.4.2. Strategy Canvas
13.1.4.3. Four Action Framework
13.1.4.4. Eliminate-Raise-Reduce-Create (ERRC) Grid
13.1.4.5. Six Path Framework
13.1.4.6. Pioneer-Migrator-Settler (PMS) Map
13.1.4.7. Three Tiers of Non-customers
13.1.4.8. Sequence of Blue Ocean Strategy
13.1.4.9. Buyer Utility Map
13.1.4.10. The Price Corridor of the Mass
13.1.4.11. Four Hurdles to Strategy Execution
13.1.4.12. Tipping Point Leadership
13.1.4.13. Fair Process
14. MARKET SIZING AND OPPORTUNITY ANALYSIS
14.1. Forecast Methodology and Key Assumptions
14.2. Quantum Computing in Drug Discovery Services Market, 2023-2035
14.2.1. Quantum Computing in Drug Discovery Services Market, 2023-2035: Analysis by Type of Drug Discovery Service Offered
14.2.1.1. Quantum Computing in Drug Discovery Services Market for Target Identification / Validation, 2023-2035
14.2.1.2. Quantum Computing in Drug Discovery Services Market for Hit Generation / Lead Identification, 2023-2035
14.2.1.3. Quantum Computing in Drug Discovery Services Market for Target Lead Optimization, 2023-2035
14.2.2. Quantum Computing in Drug Discovery Services Market, 2023-2035: Analysis by Therapeutic Area
14.2.2.1. Quantum Computing in Drug Discovery Services Market for Cardiovascular Disorders, 2023-2035
14.2.2.2. Quantum Computing in Drug Discovery Services Market for CNS Disorders, 2023-2035
14.2.2.3. Quantum Computing in Drug Discovery Services Market for Dermatological Disorders, 2023-2035
14.2.2.4. Quantum Computing in Drug Discovery Services Market for Endocrine Disorders, 2023-2035
14.2.2.5. Quantum Computing in Drug Discovery Services Market for Gastrointestinal Disorders, 2023-2035
14.2.2.6. Quantum Computing in Drug Discovery Services Market for Immunological Disorders, 2023-2035
14.2.2.7. Quantum Computing in Drug Discovery Services Market for Infectious Diseases, 2023-2035
14.2.2.8. Quantum Computing in Drug Discovery Services Market for Musculoskeletal Disorders, 2023-2035
14.2.2.9. Quantum Computing in Drug Discovery Services Market for Oncological Disorders, 2023-2035
14.2.2.10. Quantum Computing in Drug Discovery Services Market for Respiratory Disorders, 2023-2035
14.2.2.11. Quantum Computing in Drug Discovery Services Market for Others, 2023-2035
14.2.3. Quantum Computing in Drug Discovery Services Market, 2023-2035: Analysis by Key Geographical Regions
14.2.3.1. Quantum Computing in Drug Discovery Services Market in North America, 2023-2035
14.2.3.1.1. Quantum Computing in Drug Discovery Services Market in the US, 2023-2035
14.2.3.1.2. Quantum Computing in Drug Discovery Services Market in Canada, 2023-2035
14.2.3.2. Quantum Computing in Drug Discovery Services Market for Europe, 2023-2035
14.2.3.2.1. Quantum Computing in Drug Discovery Services Market in the UK, 2023-2035
14.2.3.2.2. Quantum Computing in Drug Discovery Services Market in France, 2023-2035
14.2.3.1.3. Quantum Computing in Drug Discovery Services Market in Germany, 2023-2035
14.2.3.1.4. Quantum Computing in Drug Discovery Services Market in Rest of the Europe, 2023-2035
14.2.3.3. Quantum Computing in Drug Discovery Services Market in Asia-Pacific, 2023-2035
14.2.3.3.1. Quantum Computing in Drug Discovery Services Market in China, 2023-2035
14.2.3.3.2. Quantum Computing in Drug Discovery Services Market in Japan, 2023-2035
14.2.3.3.3. Quantum Computing in Drug Discovery Services Market in Rest of Asia-Pacific, 2023-2035
14.2.3.4. Quantum Computing in Drug Discovery Services Market in Latin America, 2023-2035
14.2.3.5. Quantum Computing in Drug Discovery Services Market in Middle East and North Africa, 2023-2035
15. EXECUTIVE INSIGHTS
16. APPENDIX 1: TABULATED DATA
17. APPENDIX 2: LIST OF COMPANIES AND ORGANIZATIONS
Figure 4.1 Quantum Computing Software Providers: Distribution by Year of Establishment
Figure 4.2 Quantum Computing Software Providers: Distribution by Company Size
Figure 4.3 Quantum Computing Software Providers: Distribution by Location of Headquarters
Figure 4.4 Quantum Computing Software Providers: Distribution by Business Capabilities
Figure 4.5 Quantum Computing Software Providers: Distribution by Platform Capabilities
Figure 4.6 Quantum Computing Software Providers: Distribution by Type of Drug Discovery Service(s) Offered
Figure 4.7 Quantum Computing Software Providers: Distribution by Type of Molecule(s) Supported
Figure 4.8 Quantum Computing Software Providers: Distribution by Compatible Computational Approaches
Figure 4.9 Quantum Computing Software Providers: Distribution by End user(s)
Figure 4.10 Quantum Computing Software Providers: Distribution by Therapeutic Area(s)
Figure 5.1 Company Competitiveness Analysis: Players based in North America (Peer Group I)
Figure 5.2 Company Competitiveness Analysis: Players based in Europe (Peer Group II)
Figure 5.3 Company Competitiveness Analysis: Players based in Asia-Pacific and Rest of the World (Peer Group III)
Figure 6.1 Accenture: Revenues in USD Billion (FY 2017-FY 2022)
Figure 6.2 Atos: Revenues in EUR Billion (FY 2017- FY 9M 2022)
Figure 6.3 Fujitsu: Revenues in Yen Billion (FY 2017-FY H1 2022)
Figure 6.4 Huawei: Revenues in CNY Billion (FY 2017-FY 9M 2022)
Figure 6.5 Microsoft: Revenues in USD Billion (FY 2017-FY 2022)
Figure 7.1 Quantum Computing Hardware Providers: Distribution by Year of Establishment
Figure 7.2 Quantum Computing Hardware Providers: Distribution by Company Size
Figure 7.3 Quantum Computing Hardware Providers: Distribution by Region of Headquarters
Figure 7.4 Quantum Computing Hardware Providers: Distribution by Location of Headquarters
Figure 7.5 Quantum Computing Hardware Providers: Distribution by Type of Offering(s)
Figure 7.6 Quantum Computing Hardware Providers: Distribution by Data Storage on Cloud
Figure 7.6 Quantum Computing Hardware Providers: Distribution by Compatible Computational Approaches
Figure 7.7 Quantum Computing Hardware Providers: Distribution by Type of Offering(s) and Compatible Computational Approaches
Figure 8.1 Amazon Web Services: Revenues in USD Billion (FY 2017- FY 9M 2022)
Figure 8.2 Amazon Web Services: Service Portfolio
Figure 8.3 IBM: Revenues in USD Billion (FY 2017- FY 9M 2022)
Figure 8.4 IBM: Service Portfolio
Figure 8.5 Microsoft: Revenues in USD Billion (FY 2017- FY 2022)
Figure 8.6 Microsoft: Service Portfolio
Figure 9.1 Academic Grants Analysis: Distribution by Year of Grant
Figure 9.2 Academic Grants Analysis: Distribution by Amount Awarded
Figure 9.3 Academic Grants Analysis: Distribution by Support Period
Figure 9.4 Academic Grants Analysis: Distribution by Study Section
Figure 9.5 Word Cloud Analysis: Emerging Focus Areas
Figure 9.6 Academic Grants Analysis: Distribution by Administrating Institute Center
Figure 9.7 Academic Grants Analysis: Distribution by Type of Grant
Figure 9.8 Academic Grants Analysis: Distribution by Activity Code
Figure 9.9 Academic Grants Analysis: Distribution by Purpose of Grant
Figure 9.10 Academic Grants Analysis: Distribution by Funding Institute Center and Support Period
Figure 9.11 Prominent Program Officers: Distribution by Number of Grants
Figure 9.12 Academic Grants Analysis: Distribution by Location of Recipient Organizations
Figure 9.13 Academic Grants Analysis: Distribution by Type of Organization
Figure 9.14 Popular Recipient Organizations: Analysis by Number of Grants
Figure 9.15 Popular Recipient Organizations: Analysis by Amount Awarded
Figure 10.1 Partnerships and Collaborations: Cumulative Year-wise Trend
Figure 10.2 Partnerships and Collaborations: Distribution by Type of Partnership
Figure 10.3 Partnerships and Collaborations: Distribution by Year and Type of Partnership
Figure 10.4 Most Active Players: Distribution by Number of Partnerships
Figure 10.5 Word Cloud Analysis: Emerging Focus Areas
Figure 10.6 Partnerships and Collaborations: Distribution by Type of Continent
Figure 10.7 Partnerships and Collaborations: Distribution by Company Size and Type of Partnership
Figure 10.8 Partnerships and Collaborations: Local and International Agreements
Figure 10.9 Partnerships and Collaborations: Intercontinental and Intracontinental Agreements
Figure 10.10 Partnerships and Collaborations: Key Value Drivers
Figure 12.1 Porter’s Five Forces: Key Parameters
Figure 12.2 Porter’s Five Forces: Harvey Ball Analysis
Figure 13.1 Blue Ocean Strategy: Strategy Canvas
Figure 13.2 Blue Ocean Strategy: Pioneer-Migrator-Settler (PMS) Map
Figure 14.1 Quantum Computing in Drug Discovery Services Market, 2023-2035 (USD Million)
Figure 14.2 Quantum Computing in Drug Discovery Services Market, 2023 and 2035: Distribution by Type of Drug Discovery Service Offered
Figure 14.3 Quantum Computing in Drug Discovery Services Market for Target Identification / Validation, 2023-2035 (USD Million)
Figure 14.4 Quantum Computing in Drug Discovery Services Market for Hit Generation / Lead Identification, 2023-2035 (USD Million)
Figure 14.5 Quantum Computing in Drug Discovery Services Market for Target Lead Optimization, 2023-2035 (USD Million)
Figure 14.6 Quantum Computing in Drug Discovery Services Market, 2023 and 2035: Distribution by Therapeutic Area
Figure 14.7 Quantum Computing in Drug Discovery Services Market for Cardiovascular Disorders, 2023-2035 (USD Million)
Figure 14.8 Quantum Computing in Drug Discovery Services Market for CNS Disorders, 2023-2035 (USD Million)
Figure 14.9 Quantum Computing in Drug Discovery Services Market for Dermatological Disorders, 2023-2035 (USD Million)
Figure 14.10 Quantum Computing in Drug Discovery Services Market for Endocrine Disorders, 2023-2035 (USD Million)
Figure 14.11 Quantum Computing in Drug Discovery Services Market for Gastrointestinal Disorders, 2023-2035 (USD Million)
Figure 14.12 Quantum Computing in Drug Discovery Services Market for Immunological Disorders, 2023-2035 (USD Million)
Figure 14.13 Quantum Computing in Drug Discovery Services Market for Infectious Diseases, 2023-2035 (USD Million)
Figure 14.14 Quantum Computing in Drug Discovery Services Market for Musculoskeletal Disorders, 2023-2035 (USD Million)
Figure 14.15 Quantum Computing in Drug Discovery Services Market for Oncological Disorders, 2023-2035 (USD Million)
Figure 14.16 Quantum Computing in Drug Discovery Services Market for Respiratory Disorders, 2023-2035 (USD Million)
Figure 14.17 Quantum Computing in Drug Discovery Services Market for Others, 2023-2035 (USD Million)
Figure 14.18 Quantum Computing in Drug Discovery Services Market, 2023 and 2035: Distribution by Key Geographical Regions
Figure 14.19 Quantum Computing in Drug Discovery Services Market in North America, 2023-2035 (USD Million)
Figure 14.20 Quantum Computing in Drug Discovery Services Market in the US, 2023-2035 (USD Million)
Figure 14.21 Quantum Computing in Drug Discovery Services Market in Canada, 2023-2035 (USD Million)
Figure 14.22 Quantum Computing in Drug Discovery Services Market for Europe, 2023-2035 (USD Million)
Figure 14.23 Quantum Computing in Drug Discovery Services Market in the UK, 2023-2035 (USD Million)
Figure 14.24 Quantum Computing in Drug Discovery Services Market in France, 2023-2035 (USD Million)
Figure 14.25 Quantum Computing in Drug Discovery Services Market in Germany, 2023-2035 (USD Million)
Figure 14.26 Quantum Computing in Drug Discovery Services Market in Rest of the Europe, 2023-2035 (USD Million)
Figure 14.27 Quantum Computing in Drug Discovery Services Market in Asia-Pacific, 2023-2035 (USD Million)
Figure 14.28 Quantum Computing in Drug Discovery Services Market in China, 2023-2035 (USD Million)
Figure 14.29 Quantum Computing in Drug Discovery Services Market in Japan, 2023-2035 (USD Million)
Figure 14.30 Quantum Computing in Drug Discovery Services Market in Rest of Asia-Pacific, 2023-2035 (USD Million)
Figure 14.31 Quantum Computing in Drug Discovery Services Market in Latin America, 2023-2035 (USD Million)
Figure 14.32 Quantum Computing in Drug Discovery Services Market in Middle East and North Africa, 2023-2035 (USD Million)
Table 4.1 List of Quantum Computing Software Providers
Table 6.1 Accenture: Service Portfolio
Table 6.2 Accenture: Recent Developments and Future Outlook
Table 6.3 Atos: Service Portfolio
Table 6.4 Atos: Recent Developments and Future Outlook
Table 6.5 Fujitsu: Service Portfolio
Table 6.6 Fujitsu: Recent Developments and Future Outlook
Table 6.7 Huawei: Service Portfolio
Table 6.8 Huawei: Recent Developments and Future Outlook
Table 6.9 Microsoft: Service Portfolio
Table 6.10 Microsoft: Recent Developments and Future Outlook
Table 6.11 Xanadu: Service Portfolio
Table 6.12 Xanadu: Recent Developments and Future Outlook
Table 6.13 XtalPi: Service Portfolio
Table 6.14 XtalPi: Recent Developments and Future Outlook
Table 7.1 List of Quantum Computing Hardware Providers
Table 8.1 Amazon Web Services: Recent Developments and Future Outlook
Table 8.2 IBM: Recent Developments and Future Outlook
Table 8.3 Microsoft: Recent Developments and Future Outlook
Table 10.1 Quantum Computing in Drug Discovery Services: List of Partnerships and Collaborations
Table 16.1 Quantum Computing Software Providers: Distribution by Year of Establishment
Table 16.2 Quantum Computing Software Providers: Distribution by Company Size
Table 16.3 Quantum Computing Software Providers: Distribution by Location of Headquarters
Table 16.4 Quantum Computing Software Providers: Distribution by Business Capabilities
Table 16.5 Quantum Computing Software Providers: Distribution by Platform Capabilities
Table 16.6 Quantum Computing Software Providers: Distribution by Type of Drug Discovery Service(s) Offered
Table 16.7 Quantum Computing Software Providers: Distribution by Type of Molecule(s) Supported
Table 16.8 Quantum Computing Software Providers: Distribution by Type Compatible Computational Approaches
Table 16.9 Quantum Computing Software Providers: Distribution by End user(s)
Table 16.10 Quantum Computing Software Providers: Distribution by Therapeutic Area(s)
Table 16.11 Accenture: Revenues in USD Billion (FY 2017-FY 2022)
Table 16.12 Atos: Revenues in EUR Billion (FY 2017-FY 9M 2022)
Table 16.13 Fujitsu: Revenues in Yen Billion (FY 2017-FY H1 2022)
Table 16.14 Huawei: Revenues in CNY Billion (FY 2017-FY 9M 2022)
Table 16.15 Microsoft: Revenues in USD Billion (FY 2017-FY 2022)
Table 16.16 Quantum Computing Hardware Providers: Distribution by Year of Establishment
Table 16.17 Quantum Computing Hardware Providers: Distribution by Company Size
Table 16.18 Quantum Computing Hardware Providers: Distribution by Region of Headquarters
Table 16.19 Quantum Computing Hardware Providers: Distribution by Location of Headquarters
Table 16.20 Quantum Computing Hardware Providers: Distribution by Type of Offering(s)
Table 16.21 Quantum Computing Hardware Providers: Distribution by Data Storage on Cloud
Table 16.22 Quantum Computing Hardware Providers: Distribution by Compatible Computational Approaches
Table 16.23 Quantum Computing Hardware Providers: Distribution by Type of offering(s) and Compatible Computational Approaches
Table 16.24 Amazon Web Services: Revenues in USD Billion (FY 2017- FY 9M 2022)
Table 16.25 IBM: Revenues in USD Billion (FY 2017- FY 9M 2022)
Table 16.26 Microsoft: Revenues in USD Billion (FY 2017-FY 2022)
Table 16.27 Academic Grants Analysis: Distribution by Year of Grant
Table 16.28 Academic Grants Analysis: Distribution by Amount Awarded
Table 16.29 Academic Grants Analysis: Distribution by Support Period
Table 16.30 Academic Grants Analysis: Distribution by Study Section
Table 16.31 Academic Grants Analysis: Distribution by Administrating Institute Center
Table 16.32 Academic Grants Analysis: Distribution by Type of Grant
Table 16.33 Academic Grants Analysis: Distribution by Activity Code
Table 16.34 Academic Grants Analysis: Distribution by Purpose of Grant
Table 16.35 Academic Grants Analysis: Distribution by Administering Institute Center and Support Period
Table 16.36 Prominent Program Officers: Distribution by Number of Grants
Table 16.37 Academic Grants Analysis: Distribution by Location of Organizations
Table 16.38 Academic Grants Analysis: Distribution by Type of Organization
Table 16.39 Popular Recipient Organizations: Analysis by Number of Grants
Table 16.40 Popular Recipient Organizations: Analysis by Amount Awarded
Table 16.41 Partnerships and Collaborations: Distribution by Year
Table 16.42 Partnerships and Collaborations: Distribution by Type of Partnership
Table 16.43 Partnerships and Collaborations: Distribution by Year and Type of Partnership
Table 16.44 Most Active Players: Distribution by Number of Partnerships
Table 16.45 Partnerships and Collaborations: Distribution by Type of Continent
Table 16.46 Partnerships and Collaborations: Distribution by Company Size and Type of Partnership
Table 16.47 Partnerships and Collaborations: Local and International Agreements
Table 16.48 Partnerships and Collaborations: Intercontinental and Intracontinental Agreements
Table 16.49 Quantum Computing in Drug Discovery Services Market, 2023-2035: Scenario I, Scenario II and Scenario III (USD Million)
Table 16.50 Quantum Computing in Drug Discovery Services Market, 2023 and 2035: Distribution by Type of Drug Discovery Service Offered
Table 16.51 Quantum Computing in Drug Discovery Services Market for Target Identification / Validation, 2023-2035: Scenario I, Scenario II and Scenario III (USD Million)
Table 16.52 Quantum Computing in Drug Discovery Services Market for Hit Generation / Lead Identification, 2023-2035: Scenario I, Scenario II and Scenario III (USD Million)
Table 16.53 Quantum Computing in Drug Discovery Services Market for Target Lead Optimization, 2023-2035: Scenario I, Scenario II and Scenario III (USD Million)
Table 16.54 Quantum Computing in Drug Discovery Services Market, 2023 and 2035: Distribution by Therapeutic Area
Table 16.55 Quantum Computing in Drug Discovery Services Market for Cardiovascular Disorders, 2023-2035: Scenario I, Scenario II and Scenario III (USD Million)
Table 16.56 Quantum Computing in Drug Discovery Services Market for CNS Disorders, 2023-2035: Scenario I, Scenario II and Scenario III (USD Million)
Table 16.57 Quantum Computing in Drug Discovery Services Market for Dermatological Disorders, 2023-2035: Scenario I, Scenario II and Scenario III (USD Million)
Table 16.58 Quantum Computing in Drug Discovery Services Market for Endocrine Disorders, 2023-2035: Scenario I, Scenario II and Scenario III (USD Million)
Table 16.59 Quantum Computing in Drug Discovery Services Market for Gastrointestinal Disorders, 2023-2035: Scenario I, Scenario II and Scenario III (USD Million)
Table 16.60 Quantum Computing in Drug Discovery Services Market for Immunological Disorders, 2023-2035: Scenario I, Scenario II and Scenario III (USD Million)
Table 16.61 Quantum Computing in Drug Discovery Services Market for Infectious Diseases, 2023-2035: Scenario I, Scenario II and Scenario III (USD Million)
Table 16.62 Quantum Computing in Drug Discovery Services Market for Musculoskeletal Disorders, 2023-2035: Scenario I, Scenario II and Scenario III (USD Million)
Table 16.63 Quantum Computing in Drug Discovery Services Market for Oncological Disorders, 2023-2035: Scenario I, Scenario II and Scenario III (USD Million)
Table 16.64 Quantum Computing in Drug Discovery Services Market for Respiratory Disorders, 2023-2035: Scenario I, Scenario II and Scenario III (USD Million)
Table 16.65 Quantum Computing in Drug Discovery Services Market for Others, 2023-2035: Scenario I, Scenario II and Scenario III (USD Million)
Table 16.66 Quantum Computing in Drug Discovery Services Market, 2023 and 2035: Distribution by Key Geographical Regions
Table 16.67 Quantum Computing in Drug Discovery Services Market in North America, 2023-2035: Scenario I, Scenario II and Scenario III (USD Million)
Table 16.68 Quantum Computing in Drug Discovery Services Market in the US, 2023-2035: Scenario I, Scenario II and Scenario III (USD Million)
Table 16.69 Quantum Computing in Drug Discovery Services Market in Canada, 2023-2035: Scenario I, Scenario II and Scenario III (USD Million)
Table 16.70 Quantum Computing in Drug Discovery Services Market for Europe, 2023-2035: Scenario I, Scenario II and Scenario III (USD Million)
Table 16.71 Quantum Computing in Drug Discovery Services Market in the UK, 2023-2035: Scenario I, Scenario II and Scenario III (USD Million)
Table 16.72 Quantum Computing in Drug Discovery Services Market in France, 2023-2035: Scenario I, Scenario II and Scenario III (USD Million)
Table 16.73 Quantum Computing in Drug Discovery Services Market in Germany, 2023-2035: Scenario I, Scenario II and Scenario III (USD Million)
Table 16.74 Quantum Computing in Drug Discovery Services Market in Rest of the Europe, 2023-2035: Scenario I, Scenario II and Scenario III (USD Million)
Table 16.75 Quantum Computing in Drug Discovery Services Market in Asia-Pacific, 2023-2035: Scenario I, Scenario II and Scenario III (USD Million)
Table 16.76 Quantum Computing in Drug Discovery Services Market in China, 2023-2035: Scenario I, Scenario II and Scenario III (USD Million)
Table 16.77 Quantum Computing in Drug Discovery Services Market in Japan, 2023-2035: Scenario I, Scenario II and Scenario III (USD Million)
Table 16.78 Quantum Computing in Drug Discovery Services Market in Rest of Asia-Pacific, 2023-2035: Scenario I, Scenario II and Scenario III (USD Million)
Table 16.79 Quantum Computing in Drug Discovery Services Market in Latin America, 2023-2035: Scenario I, Scenario II and Scenario III (USD Million)
Table 16.80 Quantum Computing in Drug Discovery Services Market in Middle East and North Africa, 2023-2035: Scenario I, Scenario II and Scenario III (USD Million)
The following companies and organizations have been mentioned in the report:
Source 1: https://ftloscience.com/process-costs-drug-development/
Source 2: http://phrma-docs.phrma.org/sites/default/files/pdf/rd_brochure_022307.pdf